A (Brief) History of Cryptography

Ozalp Babaoglu

\qquad

Caesar Cipher

- A substitution cipher
- Each letter of the plaintext is replaced by a unique letter in the ciphertext
- Which letter?
- In the case of Caesar Cipher, the relation between the letter in the plaintext and that in the ciphertext is obtained through a cyclic left shift
- Decryption is obtained through a cyclic right shift
- Example: shift 3

- From the Greek steganós (otعץavóc) - "covered", "concealed", and -graphia (ypaфń) - "writing"
- The art of concealing information within a file, message, image, or video
- Form of "security through obscurity"
- Can be made "keyless"
- Examples:
- Message written in secret ink on paper
- Information contained in the LSB of image or sound files

ignavi coram morte quidem animam trahunt, audaces autem illam non saltem advertunt LJQDYLCFRUDPCPRUWHCTXLGHPCDOLPDPCWUDKXOWC CDXGDFHVCDXWHPCLOODPCQRQCVDOWHPCDGYHUWXQW
- Number of positions to shift becomes the secret key of the cipher
- Let $\operatorname{pos}(\alpha)$ be the position of letter α in the alphabet,
- Let $\operatorname{chr}(j)$ be the character in the j-th position of the alphabet,
- Let k be the key,
- Let m_{i} and c_{i} the i-th characters in the plaintext and ciphertext, respectively

$$
\begin{aligned}
C\left(m_{i}\right) & =\operatorname{chr}\left(\operatorname{pos}\left(m_{i}\right)+k\right) \bmod 26 \\
D\left(c_{i}\right) & =\operatorname{chr}\left(\operatorname{pos}\left(c_{i}\right)-k\right) \bmod 26
\end{aligned}
$$

- Trivial to carry out a brute-force attack because:
- The encryption and decryption algorithms are known
- The number of possible keys is very small (only 25 different keys)
- The language of the plaintext is known and easily recognizable
- Example: Cryptanalysis of

"AJSN ANIN ANHN"

Substitution Ciphers

- Instead of substituting letters through a cyclic shift, we can substitute them through a permutation of the alphabet, which becomes the key:
abcdefghijklmnopqrstuvwxyz
BFRULMZQWJEASOVKHXPGDTIYCN
- For an alphabet of 26 letters, there are 26 ! possible keys since there are 26 ! possible permutations of 26 letters
- Cryptanalysis through "brute force" becomes non practical
- However, statistical cryptanalysis is still possible

Substitution Ciphers

- Relative frequency of letters in English text

- Consider the ciphertext

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- Frequency of the letters in the ciphertext

P	13.33	H	5.83	F	3.33		B	1.67	C	0.00
Z	11.67	D	5.00	W	3.33	G	1.67	K	0.00	
S	8.33	E	5.00	Q	2.50	Y	1.67	L	0.00	
U	8.33	V	4.17	T	2.50	I	0.83	N	0.00	
O	7.50	X	4.17	A	1.67	J	0.83	R	0.00	
M	6.67									

Substitution Ciphers

- To resolve ambiguities, we can look at two-letter combinations
- In ciphertext, the most common 2 -letter sequence is zW
- In English language texts, the most common 2-letter sequence is th
- So, z is most likely t and w is h meaning P is e
- Thus, the sequence $\mathbf{Z W P}$ in the ciphertext is probably the
- The two most-frequent cipher letters P and z probably correspond to the two most-frequent plain letters e and t
- Cipher letters S, U , O , M, H, D probably correspond to plain letters a,o,i,n,s,h
- The least frequent cipher letters A , B , G , Y , I , J probably correspond to the least frequent plain letters $\mathrm{v}, \mathrm{k}, \mathrm{j}, \mathrm{x}, \mathrm{q}, \mathrm{z}$

| Dolyalfabetic Ciphers

- Use multiple substitution ciphers depending on the position of the letter in the plaintext

- Monoalfabetic for every $|k|$ characters
- Statistical attack still possible but becomes more difficult
- Basis for "rotor machines" like Enigma and Purple that were used during world war 2
- Babaoglu 2001-2020
- Instead of substituting single letters of the plaintext, substitute blocks of letters
- Example (blocks of 3)
- AAA \rightarrow SOM
- AAB \rightarrow PLW
- ABA \rightarrow RTQ
- ABB \rightarrow SLL
- ...
- Doing so hides information regarding the frequency of single letters and pairs of letters

- Can be repeated multiple times

```
4312567 key
ttneapt
etsurao plaintext
dhcoipk
nlmpetx
```

output: nscmeuoptthltednariepapttokx

- Maintain the same letters in the ciphertext as in the plaintext, but change their order
- For example,
4312567
attackp
ostpone
duntilt
hreepmx

Ciphertext: ttne aptetsuraodhcoipknlmpetx
© Babaoglu 2001-2020 Sicurezza

Secret-Key Cryptography Permutation Ciphers

$\begin{array}{lllllllllllllllllllllll} & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\ 23 & 24 & 25 & 26 & 27 & 28\end{array}$

After one permutation:
$\begin{array}{lllllllllllllllllllllllllll}03 & 10 & 17 & 24 & 04 & 11 & 18 & 25 & 02 & 09 & 16 & 23 & 01 & 08 & 15 & 22 & 05 & 12 & 19 & 26 & 06 & 13 & 20 & 27 & 07 & 14 & 21 \\ 2\end{array}$
After two permutations:
$\begin{array}{llllllllllllllllllllll}17 & 09 & 05 & 27 & 24 & 16 & 12 & 07 & 10 & 02 & 22 & 20 & 03 & 25 & 15 & 13 & 04 & 23 & 19 & 14 & 11 & 01 \\ 26 & 21 & 18 & 08 & 06 & 28\end{array}$

Portable electro-mechanical device invented after WW I and used extensively by Germany to encode and decode messages exchanged with troops and with U-Boats during WW II

f
 .0200 O

3 Rotors initialized to a specific setting, one or more rotors "step" with each key press

Sicurezza
Plugboard: wired to correspond to a specific initial substitution

How Enigma Worked

- Enigma Rotor Machine Simulator (MacOSX executable)

Breaking Enigma

- The plugboard and the rotors define the "key" with 158,962,555,217,826,360,000 ($\sim 10^{21}$) possible settings
- By the early 1940's, a team of British cryptologists led by Alan Turing assembled at Bletchley Park, Buckinghamshire UK were able to decode thousands of intercepted messages per day
- Relied on earlier work by Polish cryptologists, Marian Rejewski, Jerzy Różycki and Henryk Zygalski
- And on electro-mechanical US Navy "Bombes"

- Breaking Enigma is widely considered to have been decisive to the Allied victory of WW2
© Babaoglu 2001-2020

"Perfect" Ciphers: One-Time Pad

Onetime pad: example

Based on modular arithmetic:
$c_{i}=m_{i}+k_{i} \bmod 2$ (also called "exclusive or")
For textual messages: $c_{i}=m_{i}+k_{i} \bmod 26$

- Advantages:
- Since each bit of the key is generated at random, knowing one bit of the ciphertext does not provide any information beyond guessing regarding the corresponding bit of the plaintext: guarantees computational secrecy
- Defects:
- The key is as long as the plaintext message,
- Self destructs (one-time),
- Needs to be agreed upon
- In 1973, the National Bureau of Standards (NBS) publishes a "call for proposals"
- IBM submits a proposal for a system similar to an internal product called "Lucifer"
- Soon after, NSA adopts Lucifer under the name DES
- After further studies, DES is certified and made public in 1977
- First example of a robust cipher (with NSA certification) that the research community can study
- Thereafter certified every 5 years

DES Data Encryption Standard

Characteristics of DES

- Symmetric cipher (secret-key cryptography)
- Works in 64-bit blocks (not a stream cipher)
- 64-bit keys, of which only 56 bits are used (other 8 serve as parity checks)
- Permutation
- Substitution
- Expansion
- Choice (contraction)
- Circular shift (left or right)

Substitution

- Block of input bits replaced by a unique block of output bits

000	010
001	011
010	100
011	111
100	110
101	000
110	001
111	101

One bit of input determines one bit of output
© Babaoglu 2001-2020 Sicurezza

- Certain bits of the input are repeated multiple times in the output
- Example:

- Certain input bits do not appear int the output (they are ignored)
- Example:

Choice (contraction)

| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |
| 3 | | | | | | | |

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

FP

- IP and FP are inverses

PC1 (64 bits in, 56 bits out) PC2 (56 bits in, 48 bits out)

- Bits $8,16,24,32,40,48,56,64$ missing in the PC1 box
- Bits $9,18,25,35,38,43,45,54$ missing in the PC2 box

DES: E-Box

© Babaoglu 2001-2020

© Babaoglu 2001-2020

- Bits 1 and 6 select a row, bits 2-5 select a column to read a 4 -bit value from one of eight possible maps

© Babaoglu 2001-2020

DES Replacements

- As of 1999, DES is considered insecure due to its short key
- More-recent symmetric ciphers that have replaced DES:
- Triple-DES - effectively triples the DES key size
- Blowfish - variable key sizes from 32 bits up to 448 bits
- International Data Encryption Algorithm (IDEA) -128-bit keys
- Advanced Encryption Standard (AES) - key sizes of 128, 192 or 256 bits
- Straight permutation of 32 bits

16	07	20	21	29	12	28	17
01	15	23	26	05	18	31	10
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

© Babaoglu 2001-2020 Sicurezza

Brute-Force Attacks on Symmetric Ciphers

- Average time required for exhaustive key search as a function of key size

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption $/ \boldsymbol{\mu} \mathbf{s}$	Time Required at $\mathbf{1 0}^{6}$ Decryptions $/ \boldsymbol{\mu} \mathbf{s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

Brute-Force Attacks on Symmetric Ciphers

- A password-cracking expert has unveiled a computer cluster that can cycle through as many as 350 billion guesses per second

Welcome to Radeon City, population: 8. It its one of five seevers that make up a high-performance passwrord-crocking
custer.

